Curve name | $X_{324}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 10 & 15 \end{matrix}\right], \left[ \begin{matrix} 1 & 5 \\ 10 & 15 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{69}$ | ||||||||||||
Curves that $X_{324}$ minimally covers | $X_{69}$, $X_{113}$, $X_{156}$ | ||||||||||||
Curves that minimally cover $X_{324}$ | $X_{568}$, $X_{569}$, $X_{570}$, $X_{575}$, $X_{654}$, $X_{693}$, $X_{694}$, $X_{712}$ | ||||||||||||
Curves that minimally cover $X_{324}$ and have infinitely many rational points. | |||||||||||||
Model | \[y^2 = x^3 - 2x\] | ||||||||||||
Info about rational points | $X_{324}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 3503663358x + 159400872404283$, with conductor $2665869738$ | ||||||||||||
Generic density of odd order reductions | $12833/57344$ |