Curve name | $X_{207j}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{207}$ | ||||||||||||
Curves that $X_{207j}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{207j}$ | |||||||||||||
Curves that minimally cover $X_{207j}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 3456t^{15} + 55296t^{14} + 2515968t^{13} + 29611008t^{12} + 147087360t^{11} + 123863040t^{10} - 2057895936t^{9} - 9911697408t^{8} - 16463167488t^{7} + 7927234560t^{6} + 75308728320t^{5} + 121286688768t^{4} + 82443239424t^{3} + 14495514624t^{2} - 7247757312t - 1811939328\] \[B(t) = 432t^{24} + 20736t^{23} + 1327104t^{22} + 44402688t^{21} + 709502976t^{20} + 5081481216t^{19} - 2972712960t^{18} - 360579465216t^{17} - 3066284408832t^{16} - 12049906139136t^{15} - 13122064613376t^{14} + 91578584530944t^{13} + 457518757183488t^{12} + 732628676247552t^{11} - 839812135256064t^{10} - 6169551943237632t^{9} - 12559500938575872t^{8} - 11815467916197888t^{7} - 779278866186240t^{6} + 10656638495096832t^{5} + 11903484680994816t^{4} + 5959627900452864t^{3} + 1424967069597696t^{2} + 178120883699712t + 29686813949952\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 81279x - 404073855$, with conductor $6720$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |