Curve name | $X_{207m}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{207}$ | ||||||||||||
Curves that $X_{207m}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{207m}$ | |||||||||||||
Curves that minimally cover $X_{207m}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 3456t^{15} + 55296t^{14} + 2515968t^{13} + 29611008t^{12} + 147087360t^{11} + 123863040t^{10} - 2057895936t^{9} - 9911697408t^{8} - 16463167488t^{7} + 7927234560t^{6} + 75308728320t^{5} + 121286688768t^{4} + 82443239424t^{3} + 14495514624t^{2} - 7247757312t - 1811939328\] \[B(t) = -432t^{24} - 20736t^{23} - 1327104t^{22} - 44402688t^{21} - 709502976t^{20} - 5081481216t^{19} + 2972712960t^{18} + 360579465216t^{17} + 3066284408832t^{16} + 12049906139136t^{15} + 13122064613376t^{14} - 91578584530944t^{13} - 457518757183488t^{12} - 732628676247552t^{11} + 839812135256064t^{10} + 6169551943237632t^{9} + 12559500938575872t^{8} + 11815467916197888t^{7} + 779278866186240t^{6} - 10656638495096832t^{5} - 11903484680994816t^{4} - 5959627900452864t^{3} - 1424967069597696t^{2} - 178120883699712t - 29686813949952\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 81279x + 404073855$, with conductor $6720$ | ||||||||||||
Generic density of odd order reductions | $81/896$ |