Curve name | $X_{213g}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{213}$ | ||||||||||||
Curves that $X_{213g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{213g}$ | |||||||||||||
Curves that minimally cover $X_{213g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 864t^{14} - 1296t^{12} + 864t^{10} + 1080t^{8} + 864t^{6} - 1296t^{4} - 864t^{2} - 108\] \[B(t) = -432t^{24} - 5184t^{22} - 18144t^{20} - 12096t^{18} + 24624t^{16} + 31104t^{14} - 12096t^{12} + 31104t^{10} + 24624t^{8} - 12096t^{6} - 18144t^{4} - 5184t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 7262081x - 7534894881$, with conductor $16320$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |