Curve name | $X_{217g}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{217}$ | ||||||||||||
Curves that $X_{217g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{217g}$ | |||||||||||||
Curves that minimally cover $X_{217g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} + 56160t^{22} - 2862432t^{20} + 59488128t^{18} - 619949376t^{16} + 3381488640t^{14} - 9458463744t^{12} + 13525954560t^{10} - 9919190016t^{8} + 3807240192t^{6} - 732782592t^{4} + 57507840t^{2} - 442368\] \[B(t) = -432t^{36} - 409536t^{34} + 52488000t^{32} - 2461722624t^{30} + 61032268800t^{28} - 908384440320t^{26} + 8553406353408t^{24} - 51850555785216t^{22} + 202308258521088t^{20} - 505760996818944t^{18} + 809233034084352t^{16} - 829608892563456t^{14} + 547418006618112t^{12} - 232546416721920t^{10} + 62497043251200t^{8} - 10083215867904t^{6} + 859963392000t^{4} - 26839351296t^{2} - 113246208\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 1210431x + 196452927$, with conductor $9408$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |