Curve name | $X_{217h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{217}$ | ||||||||||||
Curves that $X_{217h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{217h}$ | |||||||||||||
Curves that minimally cover $X_{217h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} + 14040t^{22} - 715608t^{20} + 14872032t^{18} - 154987344t^{16} + 845372160t^{14} - 2364615936t^{12} + 3381488640t^{10} - 2479797504t^{8} + 951810048t^{6} - 183195648t^{4} + 14376960t^{2} - 110592\] \[B(t) = 54t^{36} + 51192t^{34} - 6561000t^{32} + 307715328t^{30} - 7629033600t^{28} + 113548055040t^{26} - 1069175794176t^{24} + 6481319473152t^{22} - 25288532315136t^{20} + 63220124602368t^{18} - 101154129260544t^{16} + 103701111570432t^{14} - 68427250827264t^{12} + 29068302090240t^{10} - 7812130406400t^{8} + 1260401983488t^{6} - 107495424000t^{4} + 3354918912t^{2} + 14155776\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + 18913x - 381333$, with conductor $294$ | ||||||||||||
Generic density of odd order reductions | $81/896$ |