Curve name | $X_{225a}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 16 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{225}$ | |||||||||||||||
Curves that $X_{225a}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{225a}$ | ||||||||||||||||
Curves that minimally cover $X_{225a}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -30399297484750848t^{32} - 455989462271262720t^{30} - 256494072527585280t^{28} - 49873847435919360t^{26} - 8104500208336896t^{24} - 556627761561600t^{22} + 62620623175680t^{20} + 22613002813440t^{18} + 3960899371008t^{16} + 353328168960t^{14} + 15288238080t^{12} - 2123366400t^{10} - 483065856t^{8} - 46448640t^{6} - 3732480t^{4} - 103680t^{2} - 108\] \[B(t) = 2040062320599686732316672t^{48} - 64261963098890132067975168t^{46} - 132540298891460897390198784t^{44} - 61249683578629657127288832t^{42} - 16585467596672257857945600t^{40} - 2996590564425784967036928t^{38} - 355943185499528777170944t^{36} - 2696539284087339220992t^{34} + 8098008058367808897024t^{32} + 1984101348234718347264t^{30} + 300200662486285811712t^{28} + 23819749535395086336t^{26} - 372183586490548224t^{22} - 73291177364815872t^{20} - 7568745987833856t^{18} - 482678893707264t^{16} + 2511347908608t^{14} + 5179655061504t^{12} + 681345810432t^{10} + 58923417600t^{8} + 3400040448t^{6} + 114960384t^{4} + 870912t^{2} - 432\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 31104300x + 66769598000$, with conductor $14400$ | |||||||||||||||
Generic density of odd order reductions | $51/448$ |