Curve name | $X_{225c}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 16 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{225}$ | |||||||||||||||
Curves that $X_{225c}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{225c}$ | ||||||||||||||||
Curves that minimally cover $X_{225c}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1855425871872t^{24} - 27831388078080t^{22} - 15597173735424t^{20} - 2174327193600t^{18} - 6794772480t^{16} + 40768634880t^{14} + 7842299904t^{12} + 637009920t^{10} - 1658880t^{8} - 8294400t^{6} - 929664t^{4} - 25920t^{2} - 27\] \[B(t) = 972777519512027136t^{36} - 30642491864628854784t^{34} - 63245738417024139264t^{32} - 27769758252319899648t^{30} - 4944635731504005120t^{28} - 104735079615430656t^{26} + 108371714324299776t^{24} + 24079716965154816t^{22} + 2644329759768576t^{20} - 41317652496384t^{16} - 5878837149696t^{14} - 413405282304t^{12} + 6242697216t^{10} + 4605050880t^{8} + 404103168t^{6} + 14380416t^{4} + 108864t^{2} - 54\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 19440x + 1048135$, with conductor $45$ | |||||||||||||||
Generic density of odd order reductions | $299/2688$ |