Curve name | $X_{226f}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 9 & 9 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 13 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{226}$ | ||||||||||||
Curves that $X_{226f}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{226f}$ | |||||||||||||
Curves that minimally cover $X_{226f}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -891t^{32} - 22032t^{31} - 200016t^{30} - 557280t^{29} + 3524256t^{28} + 33659712t^{27} + 80961984t^{26} - 247197312t^{25} - 2137589568t^{24} - 4632913152t^{23} + 8099599104t^{22} + 78449859072t^{21} + 213957158400t^{20} + 131875734528t^{19} - 1149101614080t^{18} - 5345979402240t^{17} - 13764204274176t^{16} - 25101750251520t^{15} - 34381912043520t^{14} - 35562016382976t^{13} - 26727108157440t^{12} - 12575153995776t^{11} - 746820255744t^{10} + 4394642079744t^{9} + 4013768097792t^{8} + 1817111494656t^{7} + 303151251456t^{6} - 159008292864t^{5} - 133350948864t^{4} - 47669575680t^{3} - 9859497984t^{2} - 1146617856t - 58392576\] \[B(t) = -10206t^{48} - 377136t^{47} - 5695920t^{46} - 40237344t^{45} - 40847328t^{44} + 1645645248t^{43} + 14006488896t^{42} + 43341194880t^{41} - 89857252800t^{40} - 1434710617344t^{39} - 6128131832064t^{38} - 9509456899584t^{37} + 34840642337280t^{36} + 286253610992640t^{35} + 1030168761154560t^{34} + 2152820386879488t^{33} + 398287080930816t^{32} - 19398629310455808t^{31} - 99865808111001600t^{30} - 303693208499994624t^{29} - 572188927474778112t^{28} - 267451815609925632t^{27} + 2611412598283075584t^{26} + 11912743745126203392t^{25} + 32185421015687331840t^{24} + 65042998170011172864t^{23} + 104675676442886799360t^{22} + 136926588726828859392t^{21} + 145473375836328689664t^{20} + 122666365844281884672t^{19} + 76507858972259647488t^{18} + 26682360121292488704t^{17} - 8061796785275928576t^{16} - 20801771267360292864t^{15} - 17307768354814033920t^{14} - 8345216215280517120t^{13} - 1564216307969163264t^{12} + 1103032859611889664t^{11} + 1181233857354006528t^{10} + 560345408757301248t^{9} + 133494881283735552t^{8} - 10449067708514304t^{7} - 23488306763268096t^{6} - 10775082251059200t^{5} - 2991219202326528t^{4} - 556238194606080t^{3} - 68344539512832t^{2} - 5055310725120t - 171228266496\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 62142366078251x - 188373226044392714094$, with conductor $23762336$ | ||||||||||||
Generic density of odd order reductions | $4769/28672$ |