Curve name | $X_{233b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{233}$ | ||||||||||||
Curves that $X_{233b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{233b}$ | |||||||||||||
Curves that minimally cover $X_{233b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{16} - 14042529792t^{14} - 25565331456t^{12} - 14219476992t^{10} - 2838896640t^{8} - 222179328t^{6} - 6241536t^{4} - 53568t^{2} - 27\] \[B(t) = -3710851743744t^{24} + 228217382240256t^{22} + 1254151925268480t^{20} + 1946776605032448t^{18} + 1331979249254400t^{16} + 444630885728256t^{14} + 76481562673152t^{12} + 6947357589504t^{10} + 325190246400t^{8} + 7426363392t^{6} + 74753280t^{4} + 212544t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 443904x + 113984640$, with conductor $816$ | ||||||||||||
Generic density of odd order reductions | $215/2688$ |