Curve name | $X_{233h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{233}$ | ||||||||||||
Curves that $X_{233h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{233h}$ | |||||||||||||
Curves that minimally cover $X_{233h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7421703487488t^{24} - 241205363343360t^{22} - 768378239188992t^{20} - 998045172891648t^{18} - 650064036888576t^{16} - 221609239511040t^{14} - 38741867495424t^{12} - 3462644367360t^{10} - 158707040256t^{8} - 3807240192t^{6} - 45798912t^{4} - 224640t^{2} - 108\] \[B(t) = 7782220156096217088t^{36} - 461096544248700862464t^{34} - 3693514644397228032000t^{32} - 10826770597788984016896t^{30} - 16776422303787594547200t^{28} - 15605925853478655098880t^{26} - 9184150139321494536192t^{24} - 3479631896514473754624t^{22} - 848542337948033482752t^{20} - 132582210750105255936t^{18} - 13258474030438023168t^{16} - 849519505984978944t^{14} - 35034752423559168t^{12} - 930185666887680t^{10} - 15624260812800t^{8} - 157550247936t^{6} - 839808000t^{4} - 1638144t^{2} + 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 513153409x - 4474407604513$, with conductor $55488$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |