Curve name | $X_{234h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{234}$ | ||||||||||||
Curves that $X_{234h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{234h}$ | |||||||||||||
Curves that minimally cover $X_{234h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1120716t^{24} - 20875968t^{23} - 197335872t^{22} - 1218454272t^{21} - 5360591232t^{20} - 17753637888t^{19} - 45664625664t^{18} - 94683893760t^{17} - 167975285760t^{16} - 249280561152t^{15} - 401251663872t^{14} - 327865466880t^{13} - 1214252384256t^{12} + 1311461867520t^{11} - 6420026621952t^{10} + 15953955913728t^{9} - 43001673154560t^{8} + 96956307210240t^{7} - 187042306719744t^{6} + 290875603156992t^{5} - 351311706980352t^{4} + 319410476679168t^{3} - 206921659318272t^{2} + 87560156086272t - 18802494406656\] \[B(t) = -456657264t^{36} - 12759576192t^{35} - 180029609856t^{34} - 1683639461376t^{33} - 11578847346432t^{32} - 61906260344832t^{31} - 266105578143744t^{30} - 942417547296768t^{29} - 2803299591831552t^{28} - 7138223020965888t^{27} - 15844713734209536t^{26} - 31288075397627904t^{25} - 56005863392673792t^{24} - 92221034006052864t^{23} - 143524338497224704t^{22} - 199191383922180096t^{21} - 300132618347741184t^{20} - 230696874896523264t^{19} - 781818113883635712t^{18} + 922787499586093056t^{17} - 4802121893563858944t^{16} + 12748248571019526144t^{15} - 36742230655289524224t^{14} + 94434338822198132736t^{13} - 229400016456391852032t^{12} + 512623827314735579136t^{11} - 1038399159285156151296t^{10} + 1871242335608081743872t^{9} - 2939472672804361469952t^{8} + 3952785688297023209472t^{7} - 4464510763322472136704t^{6} + 4154458806229923790848t^{5} - 3108173167393863892992t^{4} + 1807794106216243789824t^{3} - 773221286643159269376t^{2} + 219207849821840867328t - 31381248229773410304\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 13836x - 626416$, with conductor $576$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |