Curve name | $X_{238}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 21 & 0 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 17 & 19 \\ 2 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{108}$ | |||||||||||||||
Curves that $X_{238}$ minimally covers | $X_{108}$ | |||||||||||||||
Curves that minimally cover $X_{238}$ | $X_{238a}$, $X_{238b}$, $X_{238c}$, $X_{238d}$ | |||||||||||||||
Curves that minimally cover $X_{238}$ and have infinitely many rational points. | $X_{238a}$, $X_{238b}$, $X_{238c}$, $X_{238d}$ | |||||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{238}) = \mathbb{Q}(f_{238}), f_{108} = \frac{f_{238}^{2} - f_{238} - \frac{1}{4}}{f_{238}}\] | |||||||||||||||
Info about rational points | None | |||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 6x + 20$, with conductor $1152$ | |||||||||||||||
Generic density of odd order reductions | $2722915/11010048$ |