Curve name | $X_{238d}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 31 & 31 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 17 & 19 \\ 2 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{238}$ | |||||||||||||||
Curves that $X_{238d}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{238d}$ | ||||||||||||||||
Curves that minimally cover $X_{238d}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 231928233984t^{32} - 5566277615616t^{31} + 30614526885888t^{30} + 37572373905408t^{29} - 517779782369280t^{28} - 7305739370496t^{27} + 3287988591132672t^{26} - 47400332820480t^{25} - 9525962987274240t^{24} - 16285710680064t^{23} + 14613511736918016t^{22} + 9126738395136t^{21} - 12784184586141696t^{20} + 6782541889536t^{19} + 6673860636180480t^{18} + 1039260450816t^{17} - 2127098747289600t^{16} - 259815112704t^{15} + 417116289761280t^{14} - 105977217024t^{13} - 49938221039616t^{12} - 8912830464t^{11} + 3567751888896t^{10} + 994000896t^{9} - 145354659840t^{8} + 180817920t^{7} + 3135670272t^{6} + 1741824t^{5} - 30862080t^{4} - 559872t^{3} + 114048t^{2} + 5184t + 54\] \[B(t) = 151996487423754240t^{48} - 2188749418902061056t^{47} + 3830311483078606848t^{46} + 80436541144650743808t^{45} - 369465461805290618880t^{44} - 695064737340085764096t^{43} + 5849558219117882769408t^{42} + 2021959873339789934592t^{41} - 44782252713077140094976t^{40} - 1732660208935926497280t^{39} + 194180518355667026706432t^{38} - 805124206411068211200t^{37} - 517071234623214194786304t^{36} + 1237789629566272143360t^{35} + 894895700817073636638720t^{34} + 221919339504180658176t^{33} - 1045933513852795748352000t^{32} - 335602522098260508672t^{31} + 847677266770429269245952t^{30} - 61961770725707612160t^{29} - 485184263414926641463296t^{28} + 41797859093099053056t^{27} + 198484929953037721534464t^{26} + 9477421538551529472t^{25} - 58430586996037936742400t^{24} - 2369355384637882368t^{23} + 12405308122064857595904t^{22} - 653091548329672704t^{21} - 1895251028964557193216t^{20} + 60509541724323840t^{19} + 206952457707624333312t^{18} + 20483552374161408t^{17} - 15959678861279232000t^{16} - 846555097595904t^{15} + 853439045731614720t^{14} - 295112044707840t^{13} - 30819847263289344t^{12} + 11997285580800t^{11} + 723378801180672t^{10} + 1613665566720t^{9} - 10426680723456t^{8} - 117693554688t^{7} + 85122275328t^{6} + 2528630784t^{5} - 336026880t^{4} - 18289152t^{3} + 217728t^{2} + 31104t + 540\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + x + 1$, with conductor $128$ | |||||||||||||||
Generic density of odd order reductions | $410657/1835008$ |