Curve name | $X_{240c}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 16 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{240}$ | |||||||||||||||
Curves that $X_{240c}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{240c}$ | ||||||||||||||||
Curves that minimally cover $X_{240c}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 864t^{20} + 13824t^{12} + 25920t^{8} - 13824t^{4} - 27648\] \[B(t) = -432t^{36} - 5184t^{32} - 10368t^{28} + 96768t^{24} + 445824t^{20} + 41472t^{16} - 2515968t^{12} - 3649536t^{8} - 1327104t^{4} - 1769472\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 33x - 11937$, with conductor $4800$ | |||||||||||||||
Generic density of odd order reductions | $271/2688$ |