Curve name | $X_{243l}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{243}$ | |||||||||||||||
Curves that $X_{243l}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{243l}$ | ||||||||||||||||
Curves that minimally cover $X_{243l}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 216t^{20} + 1620t^{16} + 3456t^{12} - 3456t^{4} - 1728\] \[B(t) = -432t^{36} - 1296t^{32} - 14256t^{28} - 39312t^{24} + 2592t^{20} + 111456t^{16} + 96768t^{12} - 41472t^{8} - 82944t^{4} - 27648\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 1503856255x - 22632402369565$, with conductor $50430$ | |||||||||||||||
Generic density of odd order reductions | $11/112$ |