Curve name | $X_{243m}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{243}$ | |||||||||||||||
Curves that $X_{243m}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{243m}$ | ||||||||||||||||
Curves that minimally cover $X_{243m}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} - 54t^{20} + 405t^{16} + 864t^{12} - 864t^{4} - 432\] \[B(t) = 54t^{36} + 162t^{32} + 1782t^{28} + 4914t^{24} - 324t^{20} - 13932t^{16} - 12096t^{12} + 5184t^{8} + 10368t^{4} + 3456\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 23126x + 1661220$, with conductor $8670$ | |||||||||||||||
Generic density of odd order reductions | $271/2688$ |