## The modular curve $X_{243n}$

Curve name $X_{243n}$
Index $96$
Level $32$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $\left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$
Images in lower levels
 Level Index of image Corresponding curve $2$ $3$ $X_{6}$ $4$ $6$ $X_{13}$ $8$ $24$ $X_{36q}$ $16$ $48$ $X_{118s}$
Meaning/Special name
Chosen covering $X_{243}$
Curves that $X_{243n}$ minimally covers
Curves that minimally cover $X_{243n}$
Curves that minimally cover $X_{243n}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by $y^2 = x^3 + A(t)x + B(t), \text{ where}$ $A(t) = -108t^{24} + 216t^{20} + 1620t^{16} - 3456t^{12} + 3456t^{4} - 1728$ $B(t) = -432t^{36} + 1296t^{32} - 14256t^{28} + 39312t^{24} + 2592t^{20} - 111456t^{16} + 96768t^{12} + 41472t^{8} - 82944t^{4} + 27648$
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 + x^2 - 22954752033x + 1338611462964063$, with conductor $196800$
Generic density of odd order reductions $299/2688$