Curve name | $X_{43}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 5 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{11}$ | |||||||||
Curves that $X_{43}$ minimally covers | $X_{11}$ | |||||||||
Curves that minimally cover $X_{43}$ | $X_{64}$, $X_{67}$, $X_{71}$, $X_{74}$, $X_{77}$, $X_{82}$, $X_{91}$, $X_{92}$, $X_{127}$, $X_{137}$, $X_{139}$, $X_{144}$ | |||||||||
Curves that minimally cover $X_{43}$ and have infinitely many rational points. | $X_{64}$, $X_{67}$, $X_{71}$, $X_{74}$, $X_{77}$, $X_{82}$, $X_{91}$, $X_{92}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{43}) = \mathbb{Q}(f_{43}), f_{11} = -2f_{43}^{2} + 8\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 12x + 36$, with conductor $1176$ | |||||||||
Generic density of odd order reductions | $25/112$ |