Curve name | $X_{71}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{43}$ | |||||||||
Curves that $X_{71}$ minimally covers | $X_{43}$, $X_{49}$, $X_{50}$ | |||||||||
Curves that minimally cover $X_{71}$ | $X_{258}$, $X_{259}$, $X_{327}$, $X_{328}$ | |||||||||
Curves that minimally cover $X_{71}$ and have infinitely many rational points. | $X_{328}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{71}) = \mathbb{Q}(f_{71}), f_{43} = \frac{2f_{71}^{2} - 4}{f_{71}^{2} + 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 + 62x + 224$, with conductor $867$ | |||||||||
Generic density of odd order reductions | $401/1792$ |