Curve name | $X_{44}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{13}$ | |||||||||
Curves that $X_{44}$ minimally covers | $X_{13}$, $X_{14}$, $X_{17}$ | |||||||||
Curves that minimally cover $X_{44}$ | $X_{78}$, $X_{79}$, $X_{44a}$, $X_{44b}$, $X_{44c}$, $X_{44d}$ | |||||||||
Curves that minimally cover $X_{44}$ and have infinitely many rational points. | $X_{78}$, $X_{79}$, $X_{44a}$, $X_{44b}$, $X_{44c}$, $X_{44d}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{44}) = \mathbb{Q}(f_{44}), f_{13} = \frac{8f_{44}^{2} + 16}{f_{44}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 6692x - 209034$, with conductor $350$ | |||||||||
Generic density of odd order reductions | $513/3584$ |