Curve name | $X_{106}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 13 & 10 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 13 & 13 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{39}$ | ||||||||||||
Curves that $X_{106}$ minimally covers | $X_{39}$ | ||||||||||||
Curves that minimally cover $X_{106}$ | $X_{221}$, $X_{237}$, $X_{286}$, $X_{304}$, $X_{359}$, $X_{360}$ | ||||||||||||
Curves that minimally cover $X_{106}$ and have infinitely many rational points. | $X_{221}$, $X_{237}$, $X_{304}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{106}) = \mathbb{Q}(f_{106}), f_{39} = f_{106}^{2} + 4\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 405x + 4104$, with conductor $2016$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |