Curve name | $X_{304}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 10 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 9 & 4 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 15 & 14 \\ 2 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{97}$ | ||||||||||||
Curves that $X_{304}$ minimally covers | $X_{97}$, $X_{106}$, $X_{166}$ | ||||||||||||
Curves that minimally cover $X_{304}$ | |||||||||||||
Curves that minimally cover $X_{304}$ and have infinitely many rational points. | |||||||||||||
Model | \[y^2 = x^3 + x^2 - 13x - 21\] | ||||||||||||
Info about rational points | $X_{304}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 172584x - 27751680$, with conductor $16128$ | ||||||||||||
Generic density of odd order reductions | $42979/172032$ |