Curve name | $X_{39}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{11}$ | |||||||||
Curves that $X_{39}$ minimally covers | $X_{11}$ | |||||||||
Curves that minimally cover $X_{39}$ | $X_{63}$, $X_{66}$, $X_{80}$, $X_{83}$, $X_{90}$, $X_{91}$, $X_{95}$, $X_{97}$, $X_{105}$, $X_{106}$, $X_{107}$, $X_{124}$, $X_{128}$, $X_{143}$, $X_{144}$, $X_{147}$, $X_{160}$, $X_{161}$, $X_{165}$, $X_{166}$ | |||||||||
Curves that minimally cover $X_{39}$ and have infinitely many rational points. | $X_{63}$, $X_{66}$, $X_{80}$, $X_{83}$, $X_{90}$, $X_{91}$, $X_{95}$, $X_{97}$, $X_{105}$, $X_{106}$, $X_{107}$, $X_{124}$, $X_{165}$, $X_{166}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{39}) = \mathbb{Q}(f_{39}), f_{11} = \frac{-64}{f_{39}^{2} - 8}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 1617x + 18666$, with conductor $1575$ | |||||||||
Generic density of odd order reductions | $2659/10752$ |