Curve name | $X_{177}$ | |||||||||||||||
Index | $32$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 3 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 25 & 15 \\ 1 & 2 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{56}$ | |||||||||||||||
Curves that $X_{177}$ minimally covers | $X_{56}$ | |||||||||||||||
Curves that minimally cover $X_{177}$ | $X_{719}$ | |||||||||||||||
Curves that minimally cover $X_{177}$ and have infinitely many rational points. | ||||||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{177}) = \mathbb{Q}(f_{177}), f_{56} = \frac{6f_{177}}{f_{177}^{2} + 2}\] | |||||||||||||||
Info about rational points | None | |||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 340750x - 76560000$, with conductor $5382400$ | |||||||||||||||
Generic density of odd order reductions | $977931/1835008$ |