Curve name | $X_{22}$ | |||||||||
Index | $8$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 2 & 3 \\ 1 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 7 \\ 6 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | Elliptic curves whose discriminant is minus twice a square with $a_{p}(E) \equiv 0 \pmod{4}$ for $p \equiv 5 \text{ or } 7 \pmod{8}$ | |||||||||
Chosen covering | $X_{7}$ | |||||||||
Curves that $X_{22}$ minimally covers | $X_{4}$, $X_{7}$ | |||||||||
Curves that minimally cover $X_{22}$ | $X_{56}$, $X_{57}$, $X_{83}$, $X_{179}$ | |||||||||
Curves that minimally cover $X_{22}$ and have infinitely many rational points. | $X_{56}$, $X_{57}$, $X_{83}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{22}) = \mathbb{Q}(f_{22}), f_{7} = \frac{\frac{1}{6}f_{22}^{2} - 3}{f_{22}^{2} + 12f_{22} + 30}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 88333x + 10222037$, with conductor $44800$ | |||||||||
Generic density of odd order reductions | $955/1792$ |