Curve name | $X_{56}$ | ||||||||||||
Index | $16$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 13 & 11 \\ 1 & 6 \end{matrix}\right], \left[ \begin{matrix} 7 & 3 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{22}$ | ||||||||||||
Curves that $X_{56}$ minimally covers | $X_{22}$ | ||||||||||||
Curves that minimally cover $X_{56}$ | $X_{177}$, $X_{178}$, $X_{402}$, $X_{439}$ | ||||||||||||
Curves that minimally cover $X_{56}$ and have infinitely many rational points. | $X_{177}$, $X_{178}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{56}) = \mathbb{Q}(f_{56}), f_{22} = \frac{f_{56}^{2} + \frac{9}{2}}{f_{56}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 17400x + 4787200$, with conductor $3628800$ | ||||||||||||
Generic density of odd order reductions | $91681/172032$ |