Curve name | $X_{178}$ | |||||||||||||||
Index | $32$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 31 \\ 1 & 2 \end{matrix}\right], \left[ \begin{matrix} 23 & 19 \\ 0 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{56}$ | |||||||||||||||
Curves that $X_{178}$ minimally covers | $X_{56}$ | |||||||||||||||
Curves that minimally cover $X_{178}$ | $X_{718}$ | |||||||||||||||
Curves that minimally cover $X_{178}$ and have infinitely many rational points. | ||||||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{178}) = \mathbb{Q}(f_{178}), f_{56} = \frac{3f_{178}^{2} + 3}{f_{178}^{2} + 2f_{178} - 1}\] | |||||||||||||||
Info about rational points | None | |||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 120x - 512$, with conductor $20736$ | |||||||||||||||
Generic density of odd order reductions | $977931/1835008$ |