Curve name | $X_{232}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 11 & 11 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 2 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{83}$ | ||||||||||||
Curves that $X_{232}$ minimally covers | $X_{83}$, $X_{105}$, $X_{124}$ | ||||||||||||
Curves that minimally cover $X_{232}$ | |||||||||||||
Curves that minimally cover $X_{232}$ and have infinitely many rational points. | |||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{232}) = \mathbb{Q}(f_{232}), f_{83} = \frac{\frac{1}{4}f_{232}^{2} + f_{232} - 1}{f_{232}^{2} + 4}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 760x + 8448$, with conductor $4352$ | ||||||||||||
Generic density of odd order reductions | $45667/172032$ |