Curve name | $X_{83}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{26}$ | |||||||||
Curves that $X_{83}$ minimally covers | $X_{22}$, $X_{26}$, $X_{29}$, $X_{39}$ | |||||||||
Curves that minimally cover $X_{83}$ | $X_{232}$, $X_{237}$, $X_{275}$, $X_{276}$, $X_{370}$, $X_{402}$ | |||||||||
Curves that minimally cover $X_{83}$ and have infinitely many rational points. | $X_{232}$, $X_{237}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{83}) = \mathbb{Q}(f_{83}), f_{26} = \frac{f_{83}}{f_{83}^{2} - \frac{1}{8}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 2110x + 682176$, with conductor $202496$ | |||||||||
Generic density of odd order reductions | $1427/5376$ |