The modular curve $X_{263}$

Curve name $X_{263}$
Index $48$
Level $8$
Genus $1$
Does the subgroup contain $-I$? Yes
Generating matrices $ \left[ \begin{matrix} 1 & 0 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{23}$
Meaning/Special name
Chosen covering $X_{63}$
Curves that $X_{263}$ minimally covers $X_{63}$, $X_{64}$, $X_{80}$, $X_{82}$, $X_{138}$, $X_{144}$, $X_{148}$
Curves that minimally cover $X_{263}$ $X_{461}$, $X_{547}$
Curves that minimally cover $X_{263}$ and have infinitely many rational points.
Model A model was not computed. This curve is covered by $X_{53}$, which only has finitely many rational points.
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup None
Generic density of odd order reductions N/A

Back to the 2-adic image homepage.