Curve name | $X_{63}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{35}$ | |||||||||
Curves that $X_{63}$ minimally covers | $X_{35}$, $X_{39}$, $X_{47}$ | |||||||||
Curves that minimally cover $X_{63}$ | $X_{254}$, $X_{263}$, $X_{302}$, $X_{307}$ | |||||||||
Curves that minimally cover $X_{63}$ and have infinitely many rational points. | $X_{302}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{63}) = \mathbb{Q}(f_{63}), f_{35} = \frac{8f_{63}}{f_{63}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 538x - 4628$, with conductor $2400$ | |||||||||
Generic density of odd order reductions | $1343/5376$ |