Curve name | $X_{97}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 3 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{39}$ | |||||||||
Curves that $X_{97}$ minimally covers | $X_{39}$, $X_{45}$, $X_{47}$ | |||||||||
Curves that minimally cover $X_{97}$ | $X_{254}$, $X_{260}$, $X_{264}$, $X_{275}$, $X_{301}$, $X_{303}$, $X_{304}$, $X_{308}$, $X_{309}$, $X_{310}$, $X_{311}$, $X_{312}$, $X_{377}$, $X_{380}$ | |||||||||
Curves that minimally cover $X_{97}$ and have infinitely many rational points. | $X_{304}$, $X_{308}$, $X_{309}$, $X_{312}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{97}) = \mathbb{Q}(f_{97}), f_{39} = \frac{4f_{97}^{2} + 1}{f_{97}^{2} + f_{97} - \frac{1}{4}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 558481500x - 5079892400000$, with conductor $1159200$ | |||||||||
Generic density of odd order reductions | $1343/5376$ |