Curve name | $X_{57a}$ | |||||||||||||||
Index | $32$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 7 \\ 1 & 2 \end{matrix}\right], \left[ \begin{matrix} 15 & 11 \\ 0 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{57}$ | |||||||||||||||
Curves that $X_{57a}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{57a}$ | ||||||||||||||||
Curves that minimally cover $X_{57a}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -32925150t^{20} + 16167384t^{19} + 101160468t^{18} + 230758632t^{17} + 336911994t^{16} + 315360t^{15} - 955654416t^{14} - 2522286432t^{13} - 4398721308t^{12} - 5861269296t^{11} - 6326184456t^{10} - 5664670416t^{9} - 4206560796t^{8} - 2560107168t^{7} - 1246787856t^{6} - 468036576t^{5} - 129264390t^{4} - 24870888t^{3} - 3100140t^{2} - 221400t - 6750\] \[B(t) = -72719803296t^{30} + 53607412224t^{29} + 328107793824t^{28} + 684074101248t^{27} + 652759044192t^{26} - 1519490534400t^{25} - 6722743710816t^{24} - 13362326590464t^{23} - 15937371346464t^{22} - 3748273740288t^{21} + 34341605284896t^{20} + 102487396953600t^{19} + 193133174982624t^{18} + 285794906038272t^{17} + 353849310717984t^{16} + 376978275846144t^{15} + 350002399786272t^{14} + 284385380212224t^{13} + 202153174921440t^{12} + 125191778674176t^{11} + 66960218981664t^{10} + 30553319605248t^{9} + 11732785809120t^{8} + 3741616032768t^{7} + 977369185440t^{6} + 205582551552t^{5} + 33963564384t^{4} + 4237263360t^{3} + 374090400t^{2} + 20736000t + 540000\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 333x - 6037$, with conductor $6400$ | |||||||||||||||
Generic density of odd order reductions | $977931/1835008$ |