Curve name | $X_{57}$ | ||||||||||||
Index | $16$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 7 \\ 1 & 2 \end{matrix}\right], \left[ \begin{matrix} 15 & 11 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{22}$ | ||||||||||||
Curves that $X_{57}$ minimally covers | $X_{22}$ | ||||||||||||
Curves that minimally cover $X_{57}$ | $X_{370}$, $X_{440}$, $X_{57a}$, $X_{57b}$ | ||||||||||||
Curves that minimally cover $X_{57}$ and have infinitely many rational points. | $X_{57a}$, $X_{57b}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{57}) = \mathbb{Q}(f_{57}), f_{22} = \frac{3f_{57}^{2} + 6f_{57} - 3}{f_{57}^{2} + 1}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 13x + 43$, with conductor $6400$ | ||||||||||||
Generic density of odd order reductions | $91681/172032$ |