Curve name | $X_{57b}$ | |||||||||||||||
Index | $32$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 31 & 27 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 17 & 23 \\ 1 & 2 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{57}$ | |||||||||||||||
Curves that $X_{57b}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{57b}$ | ||||||||||||||||
Curves that minimally cover $X_{57b}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -32925150t^{20} + 16167384t^{19} + 101160468t^{18} + 230758632t^{17} + 336911994t^{16} + 315360t^{15} - 955654416t^{14} - 2522286432t^{13} - 4398721308t^{12} - 5861269296t^{11} - 6326184456t^{10} - 5664670416t^{9} - 4206560796t^{8} - 2560107168t^{7} - 1246787856t^{6} - 468036576t^{5} - 129264390t^{4} - 24870888t^{3} - 3100140t^{2} - 221400t - 6750\] \[B(t) = 72719803296t^{30} - 53607412224t^{29} - 328107793824t^{28} - 684074101248t^{27} - 652759044192t^{26} + 1519490534400t^{25} + 6722743710816t^{24} + 13362326590464t^{23} + 15937371346464t^{22} + 3748273740288t^{21} - 34341605284896t^{20} - 102487396953600t^{19} - 193133174982624t^{18} - 285794906038272t^{17} - 353849310717984t^{16} - 376978275846144t^{15} - 350002399786272t^{14} - 284385380212224t^{13} - 202153174921440t^{12} - 125191778674176t^{11} - 66960218981664t^{10} - 30553319605248t^{9} - 11732785809120t^{8} - 3741616032768t^{7} - 977369185440t^{6} - 205582551552t^{5} - 33963564384t^{4} - 4237263360t^{3} - 374090400t^{2} - 20736000t - 540000\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 333x + 6037$, with conductor $6400$ | |||||||||||||||
Generic density of odd order reductions | $977931/1835008$ |