Recent Publications by N. A. W. Holzwarth and collaborators

Link to Google Scholar Profile

Computational investigation of the structural and electrolyte properties of the extended family of lithium (thio)boracite materials: Li4B7O12Cl and beyond
D. Cory Lynch, Yan Li, Pieremanuele Canepa, and N.A.W. Holzwarth
Physical Review Materials 8 , 065401 (2024)   Local copy: PDF   Supplemental materials: SI1  SI2

First-principles simulations to understand the structural and electrolyte properties of idealized Li7.5B10S18X1.5 (X = Cl, Br, I)
Yan Li and N.A.W. Holzwarth
Physical Review Materials 6 , 045403 (2022)   Local copy: PDF

Cubic spline solver for generalized density functional treatments of atoms and generation of atomic datasets for use with exchange-correlation functionals including meta-GGA
N. A. W. Holzwarth, Marc Torrent, Jean-Baptiste Charraud, and Michel Côté
Physical Review B 105 , 125144 (2022)   Local copy: PDF Supplemental materials: SuppPDF

First-principles simulations of Li boracites Li4B7O12Cl and Li5B7O12.5Cl
Yan Li and N.A.W. Holzwarth
Physical Review Materials 6 , 025401 (2022)   Local copy: PDF

Computational study of Li3BO3 and Li3BN2 I: Electrolyte properties of pure and doped crystals and II: Stability analysis of pure phases and of model interfaces with Li anodes
Yan Li, Zachary D. Hood, and N.A.W. Holzwarth
Physical Review Materials 5 , 085402 (2021) (I)   and Physical Review Materials 5 , 085403 (2021) (II)    Local copies: I    and II

"Computational and experimental (re)investigation of the structural and electrolyte properties of Li4P2S6, and Na4P2S6, and Li2Na2P2S6"
Yan Li, Zachary D. Hood, and N.A.W. Holzwarth
Physical Review Materials 4 , 045406 (2020)   Local copy

"Continuity of phonon dispersion curves in layered ionic materials "
Yan Li, W. C. Kerr, and N. A. W. Holzwarth
Journal of Physics: Condensed Matter 32 055402 (2019)   (local copy)

"Updated comments on projector augmented wave (PAW) implementations within various electronic structure code packages"
N. A. W. Holzwarth
Computer Physics Communications 234 25-29 (2019) https://doi.org/10.1016/j.cpc.2019.05.009   (local copy)

"First-principles estimation of partition functions representing disordered lattices such as the cubic phases of Li2OHCl and Li2OHBr"
Jason David Howard and N. A. W. Holzwarth
Physical Review B 99 014109 (2019)   (local copy)

"Analysis of the statistical and convergence properties of ionic transport coefficients with application to the solid electrolyte Li2OHCl"
Jason David Howard and N. A. W. Holzwarth
Solid State Ionics 325 80-89 (2018)   (local copy)

"Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations and experiment"
Jason Howard, Zachary D. Hood, and N. A. W. Holzwarth
Physical Review Materials 1 075406 (2017)   (local copy)

"Unraveling the electrolyte properties of Na3SbS4 through computation and experiment"
Larry E. Rush, Jr., Zachary D. Hood, and N. A. W. Holzwarth
Physical Review Materials 1 075405 (2017)   (local copy)

"Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials"
Ahmad Al-Qawasmeh and N.A.W. Holzwarth
Journal of Power Sources 364 410-419 (2017)   Local copy

"Li4SnS4 and Li4SnSe4: Simulations of Their Structure and Electrolyte Properties"
Ahmad Al-Qawasmeh, Jason Howard, and N.A.W. Holzwarth
J. Electrochem. Soc. 164 A6386-A6394 (2017)   Local copy

"Li4SnS4: Simulations of Its Structure and Electrolyte Properties"
N.A.W. Holzwarth
Electrochemical Society Transactions 73 231-240 (2016)   Local copy

"First principles simulations of the porous layered calcogenides Li2+xSnO3 and Li2+xSnS3"
Jason Howard and N.A.W. Holzwarth
Phys. Rev. B 94, 064198 (2016)   Local copy

" Computational Study of Li Ion Electrolytes Composed of Li3AsS4 Alloyed with Li4GeS4"
Ahmad Al-Qawasmeh and N.A.W. Holzwarth
Journal of the Electrochemical Society 163, A2079-A2088 (2016)   Local copy

"First principles investigation of the Structural and electrolyte properties of Na4P2S6 and Li4P2S6
Larry E. Rush Jr. and N.A.W. Holzwarth
Solid State Ionics 286, 45-50 (2016)   Local copy

"Modeling interfaces between solids: Application to Li battery materials"
N. D. Lepley and N. A. W. Holzwarth
Phys. Rev. B 92 214201 (2015)   Local copy

"Structural and electrolyte properties of Li4P2S6"
Zachary D. Hood, Cameron Kates, Melanie Kirkham, Shiba Adhikari, Chengdu Liang, and N. A. W. Holzwarth
Solid State Ionics 284, 61-70 (2016)   Local copy

"Crystalline Inorganic-Solid Electrolytes: Computer Simulations and comparisons with experiment"
M. D. Johannes and N. A. W. Holzwarth,
in Chapter 6, pp. 191 - 232 of Handbook of Solid State Batteries, 2nd Edition, Nancy J. Dudney, William C. West, and Jagjit Nanda Editors, World Scientific (2016); ISBN 978-981-4651-89-9 PDF draft

"Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic Structure"
Jacilynn A. Brant, Danielle M. Massi, N. A. W. Holzwarth, Joseph H. MacNeil, Alexios P. Douvalis, Thomas Bakas, Steve W. Martin, Michael D. Gross, and Jennifer A. Aitken,
Chemistry of Materials 27, 189-196 (2015)  local copy

"First Principles Modeling of Electrolyte Materials in All-Solid-State Batteries"
N. A. W. Holzwarth,
Physics Procedia 57 29-37 (2014) local copy

Cu2ZnSnSxO4-x and Cu2ZnSnSxSe4-x: First principles simulations of optimal alloy configurations and their energies
Chaochao Dun, N. A. W. Holzwarth, Yuan Li, Wenxiao Huang, and David L. Carroll,
Journal of Applied Physics 115, 193513 (2014) Local copy

Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format
François Jollet and Marc Torrent (CEA, France) and Natalie Holzwarth,
Computer Physics Communications 185, 1246-1254 (2014) Local copy

Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles
Nicholas Lepley, Yaojun A. Du, and N. A. W. Holzwarth,
Phys. Rev. B 88, 104103 (2013) Local copy

A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure
Keerthi Senevirathne, Cynthia S. Day, Michael D. Gross, Abdessadek Lachgar, and N. A. W. Holzwarth,
Solid State Ionics 233, 95-101 (2013) Local copy

Computer Modeling of Crystalline Electrolytes -- Lithium Thiophosphates and Phosphates
N. D. Lepley and N. A. W. Holzwarth, --
J. Electrochem. Soc. 159, A538-A547 (2012) Local copy

Adaptation of the Projector Augmented Wave (PAW) formalism to the treatment of orbital-dependent exchange-correlation functionals
Xiao Xu and N. A. W. Holzwarth, --
Phys. Rev. B 84 155113 (16 pages) (2011) local copy

Analysis of numerical methods for evaluating the Fock exchange integral in a plane wave basis
N. A. W. Holzwarth and Xiao Xu, --
Phys. Rev. B 84 113102 (4 pgs; brief report) (2011) local copy

Computer Modeling of Crystalline Electrolytes -- Lithium Thiophosphates and Phosphates
N. D. Lepley and N. A. W. Holzwarth, --
ECS Transactions 35 (14) 39-51 (2011) local copy

Computer Modeling of Lithium Phosphate and Thiophosphate Electrolyte Materials
N. A. W. Holzwarth, N. D. Lepley, and Yaojun A. Du --
Journal of Power Sources 196 6870-6876 (2011) local copy

Electronic structure packages: Two implementations of the projector augmented wave (PAW) formalism
Marc Torrent, N. A. W. Holzwarth, Francois Jollet, David Harris, Nicholas Lepley, and Xiao Xu --
Computer Physics Communications 181 1862-1867 (2010) local copy

A projector augmented wave (PAW) formulation of Hartree-Fock calculations of electronic structure
Xiao Xu and N. A. W. Holzwarth -- Phys. Rev. B 81 245105 (14pp) (2010)   Local copy

First-principles study of LiPON and related solid electrolytes
Yaojun A. Du and N. A. W. Holzwarth -- Physical Review B 81 184106 (15pp) (2010)   Local copy

First principles simulations of Li ion migration in materials related to LiPON electrolytes
Yaojun A. Du and N. A. W. Holzwarth, ECS Transactions 25 (36) 27-36 (2010) local copy
Official link: http://dx.doi.org/10.1149/1.3393837

Effects of O vacancies and N or Si substitutions on Li+ migration in Li3PO4 electrolytes from first principles
Yaojun A. Du and N. A. W. Holzwarth -- Phys. Rev. B 78, 174301 (2008)   local copy

Li ion migration in Li3PO4 electrolytes: Effects of O vacancies and N substitutions
Yaojun A. Du and N. A. W. Holzwarth -- ECS Transactions 13 (26) 75-82 (2008)   local copy

An Introduction to Hubbard Rings at U = ∞
W. B. Hodge, N. A. W. Holzwarth, and W. C. Kerr --
submitted to American Journal of Physics 04/12/10 local copy

Mechanisms of Li+ diffusion in crystalline Li3PO4 electrolytes from first principles
Yaojun A. Du and N. A. W. Holzwarth -- Physical Review B 76, 174302 (2007)

Comparison of the electronic structures of four crystalline phases of FePO4
Ping Tang, N. A. W. Holzwarth, and Yaojun A. Du -- Physical Review B 76, 174118 (2007)

Li ion diffusion mechanisms in the crystalline electrolyte γ-Li3PO4
Yaojun A. Du and N. A. W. Holzwarth -- Journal of the Electrochemical Society 154 A999-A1004 (2007).

A method for calculating electronic structures near surfaces of semi-infinite crystals
Yonas Abraham and N. A. W. Holzwarth -- Phys. Rev. B 73, 035412 (2006)

The electronic structures of BEDT-TTF·PF6 crystals; a comparison of self-consistent field and Hubbard model analyses
Ping Tang, N. A. W. Holzwarth, Freddie Salsbury, Jr., and Jeremy Qualls
-- submitted to Phys. Rev. B 10-07-04 ; Not accepted for publication.

Electronic structures of FePO4, LiFePO4, and related materials
Ping Tang and N. A. W. Holzwarth -- Phys. Rev. B 68, 165107 (2003)

Pair-state analysis of the eigenstates of an N-electron system
N. A. W. Holzwarth -- submitted to Phys. Rev. Lett. 4/23/02;
not accepted for publication, but work continued in collaboration with W. C. Kerr and W. B. Hodge

The electronic structure of oxygen related defects in PbWO4 and CaMoO4 crystals
Yonas B. Abraham, N. A. W. Holzwarth, R. T. Williams, G. Eric. Matthews, and Alan R. Tackett -- Phys. Rev. B64, 245109 (2001)

A Projector Augmented Wave (PAW) code for electronic structure calculations,
Part I: atompaw for generating atom-centered functions and PartII: pwpaw for periodic solids in a plane wave basis.
A. R. Tackett, N. A. W. Holzwarth, and G. E. Matthews -- Computer physics Communications 135 329-347, 348-376 (2001)

Electronic Structure and Optical Properties of CdMoO_4 and CdWO_4
Y. Abraham, N. A. W. Holzwarth, and R. T. Williams -- Phys. Rev. B 62, 1733-1741 (2000)

ELECTRONIC STRUCTURE OF PURE AND DEFECTIVE PbWO4 , CaWO4 , and CdWO4
R. T. Williams, Y. C. Zhang, Y. Abramam, and N. A. W. Holzwarth invited paper presented by R. T. Williams at the SCINT99 conference in Moscow, Aug. 1999.

ELECTRONIC BAND STRUCTURE AND SPECTROSCOPY OF PbWO4
Y. C. Zhang, N. A. W. Holzwarth, R. T. Williams, and M. Nikl, contributed paper presented at the EXCON98 conference in Boston, Nov. 1-5, (1998).

ELECTRONIC BAND STRUCTURES OF THE SCHEELITE TUNGSTATES AND CONSEQUENCES FOR MATERIAL PROPERTIES
N. A. W. Holzwarth, Yaochun Zhang, and Richard Williams, invited paper presented at the International Workshop on Tungstate Crystals, S. Maria di Galeria -- Roma, Oct. 12-14 (1998).

Electronic band structures of the scheelite materials -- CaMoO4, CaWO4, PbMoO4, and PbWO4,
Y. Zhang, N. A. W. Holzwarth, and R. T. Williams, Phy. Rev. B 57, 12738-12750 (1998)

Complete projector functions for the projector augmented wave (PAW) method of electronic structure calculations,
N. A. W. Holzwarth, G. E. Matthews, A. R. Tackett, and R. B. Dunning, Phys. Rev. B 57, 11827-11830 (1998).

Comparison of the PAW, pseudopotential, and LAPW formalisms for density functional calculations of solids,
N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tackett, and Y. Zeng, Phys. Rev. B 55, 2005-2017 (1997)



Graphics Examples

A visualization of electron density of FeS2 (fool's gold),calculated using self-consistent density functional theory. The visualization was generated by Edward Holzwarth using IBM's Data Explorer software package.
> A visualization of the electron density of a 7-layer slab of cubic SiC with a (001) surface exposed, calculated using the PAW formalism. The visualization was generated using IBMs Data Explorer software package with help from Edward Holzwarth and Alan Tackett.
A visualization of the electron density and atomic configuration of CaMoO4 calculated using the PAW formalism(left) and LAPW formalism(right). The visualization was generated using IBMs Data Explorer software package as in the figures shown above.


Return to webpage for:
N. A. W. Holzwarth Department of Physics Wake Forest University
Last modfied: Wednesday, 05-Jun-2024 00:49:26 EDT